Life Sciences

Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotyping of Salmonella paratyphi A: An Impact of Biofield Treatment

Written by Trivedi Effect | Aug 20, 2015 4:00:00 AM

Journal: Clinical Microbiology: Open Access PDF  

Published: 20 Aug 15 Volume: 4 Issue: 4

DOI: 10.4172/2327-5073.1000215 ISSN: 2327-5073

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Harish Shettigar, Sambhu Charan Mondal and Snehasis Jana*

Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, et al. (2015) Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotyping of Salmonella paratyphi A: An Impact of Biofield Treatment. Clin Microbiol 4: 215. doi:10.4172/2327-5073.1000215

 

Download Article

 

Abstract

Enteric fever is a major global problem. Emergence of antimicrobial resistance threatens to render current treatments ineffective. The current study was attempted to investigate the effect of biofield treatment on Salmonella paratyphi A (S. paratyphi A) in terms of antimicrobial susceptibility assay, biochemical characteristics and biotyping. S. paratyphi A strain were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 9150). The study was conducted in revived and lyophilized state of S. paratyphi A. Both revived (Group; Gr. II) and lyophilized (Gr. III) strain of S. paratyphi A were subjected to Mr. Trivedi’s biofield treatment. Revived treated cells was assessed on day 5 and day 10, while lyophilized treated cells assessed on day 10 after biofield treatment with respect to control (Gr. I). The antimicrobial susceptibility of S. paratyphi A showed significant (60%) alteration in revived treated cells (Gr. II) on day 10 as compared to control. The MIC values of S. paratyphi A also showed significant (53.12%) alteration in Gr. II and on day 10 while, no alteration was found in Gr. on day 5 as compared to control. It was observed that overall 18.18% biochemical reactions were altered in the treated groups with respect to control. Moreover, biotype numbers were substantially changed in Gr. II, on day 5 (53001040, S. paratyphi A), on day 10 (57101050, Citrobacter freundii complex) as compared to control (53001000, S. paratyphi A). Besides, biotype number was also changed in Gr. III (53001040, S. paratyphi A) as compared to control. The overall result suggested that biofield treatment had significant impact on S. paratyphi A in Gr. II on day 10 with respect to antimicrobial susceptibility, MIC values and biotype number.

Conclusion

Altogether, the biofield treatment has significantly altered the susceptibility pattern (60%) with MIC values (53.12%) of tested antimicrobials against the strain of S. paratyphi A in revived treated cells (Gr. II) as compared to control. It also altered the biochemical reactions pattern (18.18%) and biotype number of biofield treated strain of S. paratyphi A in Gr. II as compared to control. On the basis of changed biotype number after biofield treatment, new organism was identified in Gr. II as Citrobacter freundii complex (57101050) with respect to control i.e. S. paratyphi A (53001000). Mr. Trivedi’s biofield treatment could be applied as alternative therapeutic approach to alter the sensitivity pattern of antimicrobials.