Life Sciences

Molecular Analysis of Biofield Treated Eggplant and Watermelon Crops

Written by Trivedi Effect | Jan 31, 2016 5:00:00 AM

Journal: Advances in Crop Science and Technology PDF  

Published: 31-Jan-16 Volume: 4 Issue: 1

DOI: 10.4172/2329-8863.1000208 ISSN: 2329-8863

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar and Snehasis Jana *

Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, et al. (2016) Molecular Analysis of Biofield Treated Eggplant and Watermelon Crops. Adv Crop Sci Tech 4: 208. doi:10.4172/2329-8863.1000208

 

Download Article

 

Abstract

Eggplant and watermelon, as one of the important vegetative crops have grown worldwide. The aim of the present study was to analyze the overall growth of the two inbreed crops varieties after the biofield energy treatment. The plots were selected for the study, and divided into two parts, control and treated. The control plots were left as untreated, while the treated plots were exposed with Mr. Trivedi’s biofield energy treatment. Both the crops were cultivated in different fields and were analyzed for the growth contributing parameters as compared with their respective control. To study the genetic variability in both plants after biofield energy treatment, DNA fingerprinting was performed using RAPD method. The eggplants were reported to have uniform colored, glossy, and greener leaves, which are bigger in size. The canopy of the eggplant was larger with early fruiting, while the fruits have uniform shape and the texture as compared with the control. However, the watermelon plants after the biofield treatment showed higher survival rate, with larger canopy, bright and dark green leaves compared with the untreated plants. The percentage of true polymorphism observed between control and treated samples of eggplant and watermelon seed samples were an average value of 18% and 17%, respectively. Overall, the data suggest that Mr. Trivedi’s biofield energy treatment has the ability to alter the plant growth rate, and can be utilized in better way as compared with the existing agricultural crop improvement techniques to improve the overall crop yield.

Conclusion

In summary, biofield energy treatment on the eggplant and watermelon showed improved growth characteristics such as fruits, leaves and free from pest attack. The canopy of plant and fruits of eggplant and watermelon was reported as large compared to their respective control. Biofield treated eggplant and watermelon plants showed strong and uniform colored leaves, with high survival rate, which suggest higher immunity of plant as compared with the control. Further, the watermelons were bigger in size, and the texture of the fruit was different from untreated fruits. It is assumed that after biofield treatment, the polarization of seeds might be affected that changed the interaction between water and seed during germination. Besides, the percentage of true polymorphism observed between control and treated samples of eggplant and watermelon seed sample was an average value of 18% and 17%, respectively. Overall, the experimental results suggested that Mr. Trivedi’s biofield energy treatment might be used to improve the overall crop productivity with the capability to alter at genetic level.