Materials Science

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated o-Aminophenol

Written by Trivedi Effect | Sep 15, 2015 4:00:00 AM

Journal: Pharmaceutica Analytica Acta PDF  

Published: 15-Sep-15 Volume: 6 Issue: 10

DOI: 10.4172/2153-2435.1000425 ISSN: 2153-2435

Authors: Snehasis Jana*, Mahendra Kumar Trivedi, Rama Mohan Tallapragada , Alice Branton, Dahryn Trivedi, Gopal Nayak and Rakesh Kumar Mishra

Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al.(2015) Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol. Pharm Anal Acta 6: 425. doi:10.4172/21532435.1000425

 

Download Article

 

Abstract

O-aminophenol has extensive uses as a conducting material and in electrochemical devices. The objective of this research was to investigate the influence of biofield energy treatment on the physical thermal and spectral properties of o-aminophenol. The study was performed in two groups; the control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated o-aminophenol samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, and Ultra violet-visible spectroscopy analysis (UV-vis). The XRD analysis showed an increase in peak intensity of the treated o-aminophenol with respect to the control. Additionally, the crystallite size of the treated o-aminophenol was increased by 34.51% with respect to the control sample. DSC analysis showed a slight increase in the melting temperature of the treated sample as compared to the control. However, a significant increase in the latent heat of fusion was observed in the treated o-aminophenol by 162.24% with respect to the control. TGA analysis showed an increase in the maximum thermal decomposition temperature (Tmax) in treated o-aminophenol (178.17ºC) with respect to the control (175ºC). It may be inferred that the thermal stability of o-aminophenol increased after the biofield treatment. The surface area analysis using BET showed a substantial decrease in the surface area of the treated sample by 47.1% as compared to the control. The FT-IR analysis showed no changes in the absorption peaks of the treated sample with respect to the control. UV-visible analysis showed alteration in the absorption peaks i.e. 211?203 nm and 271?244 nm of the treated o-aminophenol as compared to the control. Overall, the results showed that the biofield treatment caused an alteration in the physical, thermal and spectral properties of the treated o-aminophenol.

Conclusion

The XRD analysis showed an increase in the intensity of peaks in the treated o-aminophenol with respect to the control. The crystallite size significantly increased in the treated compound as compared to the control o-aminophenol. The biofield treatment may have caused a reduction in the dislocation density and an increase in unit cell that led to the increase in crystallite size. DSC and DTA showed a change in the melting temperature of the treated compound with respect to the control. A substantial increase in the latent heat of fusion was observed in the treated o-aminophenol by 162.24% after receiving the biofield treatment with respect to the control. TGA analysis showed an increase in the thermal stability of the treated compound as compared to the control. Surface area analysis showed a substantial decrease in the surface area of the treated o-aminophenol as compared to the control. FT-IR analysis showed no significant changes in the FT-IR spectra of the treated sample as compared to the control. However, the UV-visible analysis showed alterations in the bonding ? - ?* transition in the aromatic ring of the treated sample with respect to the control. Overall, the results demonstrated that the biofield treatment influenced the physical, thermal and spectral properties of the treated o-aminophenol. Hence, the high thermal stability of the treated o-aminophenol could make it a potential candidate for the fabrication of electrochemical and conducting devices.