Journal: Clinical Pharmacology & Biopharmaceutics PDF
Published: 25-Sep-15 Volume: 4 Issue: 4
DOI: 10.4172/2167-065X.1000145 ISSN: 2167-065X
Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Rakesh Kumar Mishra and Snehasis Jana*
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone. Clin Pharmacol Biopharm 4: 145. doi:10.4172/2167-065X.1000145
Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedis biofield energy treatment.
Methods: The control and treated DHBP samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser particle size analyser, surface area analyser, Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis.
Results: The XRD study indicated a slight decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control sample. However, XRD study revealed an increase in average crystallite size of the treated DHBP by 32.73% as compared to the control sample. The DSC characterization showed no significant change in the melting temperature of treated sample. The latent heat of fusion of the treated DHBP was substantially increased by 11.67% as compared to the control. However, TGA analysis showed a decrease in the maximum thermal decomposition temperature (Tmax) of the treated DHBP (257.66ºC) as compared to the control sample (260.93ºC). The particle size analysis showed a substantial increase in particle size (d50 and d99) of the treated DHBP by 41% and 15.8% as compared to the control sample. Additionally, the surface area analysis showed a decrease in surface area by 9.5% in the treated DHBP, which was supported by the particle size results. Nevertheless, FT-IR analysis showed a downward shift of methyl group stretch (2885?2835 cm-1) in the treated sample as compared to the control. The UV analysis showed a blue shift of absorption peak 323?318 nm in the treated sample (T1) as compared to the control.
Conclusion: Altogether, the results showed significant changes in the physical, thermal and spectral properties of treated DHBP as compared to the control.
In summary, the XRD study showed a decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control. However, average crystallite size was increased by 32.73% in treated DHBP as compared to the control sample. It is assumed that biofield energy treatment might cause a reduction in dislocation density that lead to an increase in crystallite size in treated sample. The DSC analysis showed an increase in the latent heat of fusion of treated DHBP by 11.67% as compared to the control sample. TGA analysis indicated the decrease in thermal stability of the treated compound as compared to the control. A significant increase by 41% and 15.8% was observed in d50 and d99, respectively of the treated DHBP as compared to control sample. Additionally, the BET analysis showed a reduction in surface area (8.64%) of the treated DHBP that was due to increase in particle size of the sample. The UV spectral analysis showed alterations in absorption peak at 323?318 nm in treated sample as compared to the control. Thus, the biofield energy treatment has caused substantial changes in physical, thermal and spectral properties of DHBP.