Materials Science

Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder

Written by Trivedi Effect | Sep 19, 2015 4:00:00 AM

Journal: Material Science & Engineering PDF  

Published: 19-Sep-15 Volume: 4 Issue: 6

DOI: 10.4172/2169-0022.1000198 ISSN: 2169-0022

Authors: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O and Jana S

Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder. J Material Sci Eng 4: 198. doi:10.4172/2169-0022.1000198

 

Download Article

 

Abstract

Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated indium samples were characterized by the X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD diffractogram showed the shifting of peaks toward higher Bragg’s angles in the treated indium sample as compared to the control. The crystallite size of treated indium sample were substantially changed from -80% to 150.2% after biofield energy treatment, as compared to control. In addition, the biofield energy treatment has altered the lattice parameter (-0.56%), unit cell volume (-0.23%), density (0.23%), atomic weight (-0.23), and nuclear charge per unit volume (1.69%) of the treated indium sample with respect to the control. The DSC showed an increase in the latent heat of fusion up to 3.23% in the treated indium sample with respect to control. Overall, results suggest that biofield energy treatment has substantially altered the atomic, physical, and thermal properties of treated indium powder. Therefore, the treated indium could be utilized in thermal interface material in semiconductor industries.

Conclusion

The XRD analysis showed that the alteration in crystallite size from -80% to 150.2% in the treated indium as compared to control. The lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of the treated powder were altered after biofield treatment. In addition, a significant alteration in relative intensities of all XRD peaks suggested the modification in crystal morphology of treated indium after biofield energy treatment. Besides, the thermal analysis results indicated the increase in latent heat of fusion (upto 3.23%), which could be due to increase in interatomic attractive force in treated sample. Overall, the result demonstrated that Mr. Trivedi’s biofield energy treatment could be applied to modify the thermal and physical properties of indium for semiconductor industries.